Protocol

Non-specific intravenous immunoglobulin therapy for suspected or proven neonatal sepsis: an international, placebo controlled, multicentre randomised trial

April 2007
ISRCTN 94984750
CONTENTS

Summary 3
Introduction 6
Hypothesis to be tested 6
Background 6
 Incidence, potential impact on mortality and problems in diagnosis 6
 Potential impact of sepsis on the perinatal brain 6
 Possible adjunctive treatments 7
 Non-specific versus specific immunoglobulin 8
 Results of previous randomised controlled trials 8
 Safety: No evidence of transmission of blood borne viruses or prion disease 10
 Safety: No evidence of haemolysis related to T activation of red cells 11
 Current practice 11
 Summary 11
Trial eligibility 12
Recruitment and Trial entry 12
Treatment allocation 13
Clinical management 13
 Administration of treatment 13
 Neonatal management 13
Measurement of outcome 14
 Primary outcome measure 14
 Secondary short term outcomes 14
 Secondary long term outcomes 14
 Health service utilisation 14
Data collection 14
Analysis 15
 Sub-group analyses 15
 Interim analyses: the Data Monitoring and Ethics Committee 16
Sample size and feasibility 17
 Feasibility 18
Publication policy 19
Organisation 20
 Trial Steering Committee 20
 Investigators’ Group 20
 Project Management Group 21
 Local Co-ordination 21
Frequently asked questions 22
Appendix 1: Contents of IVIG and placebo 23
References 24
SUMMARY

Background
Sepsis is an important, but sometimes undiagnosed, cause of perinatal brain damage and mortality. In term infants, blood concentrations of inflammatory cytokines are elevated in those later diagnosed with cerebral palsy. In preterm infants, infection remote from the brain may predispose to cerebral white matter damage. While effective antibiotic treatment is essential, resistance to antibiotics is increasing. Adjuvant therapies, such as intravenous immunoglobulin (IVIG), therefore offer an important additional strategy. Three recent Cochrane systematic reviews of randomised controlled trials in nearly 6,000 patients suggest that non-specific, polyclonal IVIG is safe, reduces sepsis by about 15% in prophylaxis and may reduce mortality by 45% in treatment of neonatal sepsis. However, the trials of treatment were small and lacked long-term follow-up data. This protocol is for a large, simple, international trial, to assess reliably whether treatment of neonatal sepsis with IVIG reduces mortality and adverse neuro-developmental outcome. It needs no special expertise and can be conducted simultaneously with other studies.

Costs
IVIG, placebo and trial materials will be imported in full compliance with the requirements of national regulatory authorities and supplied free of charge throughout the study.

Safety
IVIG is one of the safest blood products available. Ethanol fractionation and specific virus inactivation process, precautions not available for fresh frozen plasma or cryoprecipitate, increase the safety of IVIG. The process also removes IgM, the main source of anti T antibody linked with haemolysis in infections such as *Clostridium difficile*. There are no reports of significant neonatal haemolysis with IVIG.

Support
Resources are available to train and support part time local research nurses to facilitate recruitment and data collection.

Follow up
Neuro-developmental status will be assessed by appropriate methods in all survivors at 2 years.
Investigators:

Peter Brocklehurst
National Perinatal Epidemiology Unit
University of Oxford
Old Road Campus
Headington
Oxford OX3 7LF
Tel: 01865 289700
Fax: 01865 289701
Email: peter.brocklehurst@npeu.ox.ac.uk

William Tarnow-Mordi
Professor in Neonatology
Westmead Hospital
Sydney, Australia

Khalid Haque
Consultant/Senior Lecturer Neonatology
St. Helier Hospital, Carshalton

Ben Stenson
Consultant Neonatologist
Edinburgh Royal Infirmary

Andy Leslie
ANNP
City Hospital, Nottingham

Alison Salt
Consultant Paediatrician
The Wolfson Centre, London

Jim Stephenson
Microbiologist
St. Helier Hospital, Carshalton

Sally Brearley
Chair
Merton and Sutton Community Health Council, Surrey

Participating centres:
At least 150 neonatal intensive care units around the world.

Sponsor:
Medical Research Council
20 Park Crescent
London W1N 4AL
PROTOCOL SUMMARY

? Sepsis - consider

Eligibility

Babies are eligible if:

1. They are receiving antibiotics and have proven or suspected serious infection
 AND
2. They have at least one of the following:
 - birthweight is less than 1500g
 OR
 - evidence of infection in blood culture, CSF or usually sterile body fluid
 OR
 - respiratory support via an endotracheal tube
 AND
3. There is substantial uncertainty that IVIG is indicated

EXCLUSIONS: • IVIG has already been given
 • IVIG is thought to be needed or contra-indicated

Consent

• On or before admission, all parents receive an Information Leaflet from the nursing staff, outlining the study
• If a baby becomes eligible, the parents are asked, in person or by telephone, for consent to participate in the study and later follow up.

Randomisation (study entry)

• By sequential Study Drug Pack, so it is not necessary to make a phone call.
• Short Entry Form to complete.

Treatment

• 10 ml/kg of IVIG or identical placebo solution over 4-6 hours, repeated 48 hours later. No more IVIG or placebo can be given.

After discharge

• Short Discharge Form to complete at the time the baby leaves the unit.
INTRODUCTION
This protocol is for a large, simple-in-design, double blind, placebo controlled pragmatic multicentre randomised trial.

HYPOTHESIS TO BE TESTED
That, in infants receiving antibiotics for clinical sepsis, the addition of non-specific, polyclonal intravenous immunoglobulin IgG (IVIG) therapy reduces mortality and major morbidity compared with antibiotics alone.

BACKGROUND
Neonatal sepsis is a major cause of mortality and morbidity and has been implicated in the causation of perinatal brain damage and cerebral palsy, both in term and preterm infants. Although antibiotics are the mainstay of therapy, increasing numbers of bacteria are resistant to them. Effective adjunctive strategies are therefore needed.

Incidence, potential impact on mortality and problems in diagnosis
In a prospective study in seven Australian neonatal intensive care units (NICUs), Isaacs and colleagues reported an annual incidence of sepsis of 6.6 per 1000 live births, of which 75% were late onset (more than 48 hours after birth). Overall hospital mortality for sepsis was 10%. In a cohort of 54 UK neonatal units in 1998, 204 (5%) of 3,963 consecutive admissions to neonatal units had a positive blood culture. Of these, 16 (8%) died. Of 3,759 (95%) babies with negative blood cultures, 95 babies died (2.5%). For very low birthweight (VLBW) infants with positive blood cultures, mortality was 14%. In a North American cohort, mortality in VLBW infants with septicaemia was 21%. However, these figures may underestimate the true incidence of neonatal sepsis. Blood cultures may often be negative if less than 1 ml of blood is sampled. Furthermore, while sepsis was the primary cause of death in most infants under 1000g at autopsy, it was clinically undiagnosed in 61% of cases. Sepsis-specific mortality rates should therefore be interpreted with caution, as the diagnosis may often be inaccurate. More reliable evidence would be provided by randomised comparisons of the effects of specific interventions on mortality from all causes.

Potential impact of sepsis on the perinatal brain
Recent evidence suggests that sepsis is also important in the pathogenesis of neuro-developmental impairment of perinatal origin. In a case-control study of 424 births, Grether and Nelson found an association between maternal infection in labour and cerebral palsy in infants with birthweight of at least 2500g (OR 9.3, 95% CI 3.7, 230). In another case-control study of 96 term infants, levels of cytokines in neonatal blood spots were consistently higher in children diagnosed with cerebral palsy at 3 years of age than in controls, suggesting that an inflammatory response may be important in the aetiology of cerebral impairment. In preterm infants, sepsis is also associated with subsequent adverse neuro-developmental outcome. Dammann and Leviton have suggested that infection remote from the preterm brain may predispose to
cerebral white matter damage with disruption of oligodendroglial myelination and disordered migration of precursors. The damage could result partly from inadequate endogenous protection from developmentally regulated factors such as oligotrophins. As antenatal and postnatal sepsis may predispose to neurodevelopmental impairment and disability in term and preterm infants, these are essential measures of outcome.

Possible adjunctive treatments

Immunoglobulin

Newborn infants, particularly those who are very low birthweight or preterm, are deficient in IgG which binds to cell surface receptors, provides opsonic activity, activates fixation of complement, promotes antibody dependent cytotoxicity improves neutrophil chemiluminescence and phagocytosis and can improve neutropenia by enhancing the release of stored neutrophils. Intravenous immunoglobulin (IVIG) is therefore a theoretically attractive strategy with multiple mechanisms of action. Its potential clinical relevance is confirmed by recent evidence from randomised controlled trials (see below).

Pentoxifylline

In animal models of sepsis, pentoxifylline, a methylxanthine derivative, inhibits production of Tumour Necrosis Factor (TNF), preserves micro-vascular blood flow, prevents circulatory failure and intestinal vaso-constriction and improves survival. It is well tolerated and decreases TNF production in adults and preterm infants with sepsis. Two randomised controlled trials (RCTs) of pentoxifylline recruited 140 preterm infants with clinical sepsis. Among the 107 with positive blood cultures, pentoxifylline was associated with an 86% reduction in risk of mortality (RR 0.14, 95% CI 0.03 to 0.76). Outcomes for the 33 infants not included in the analyses are not available. Pentoxifylline may be a promising therapy in neonatal sepsis.

Cytokines

Other adjunctive strategies for prophylaxis or treatment of neonatal sepsis are also attractive, such as use of the recombinant cytokines Granulocyte Colony Stimulating Factor (G-CSF) or Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) to prevent neutropenia. However, no systematic reviews of RCTs of these agents are yet available. In four RCTs of G-CSF therapy which recruited 125 infants with neonatal sepsis, there was a trend to reduced mortality which was not statistically significant (OR 0.6, 95% CI 0.2 to 1.8). Two recent RCTs of GM-CSF prophylaxis in a total of 339 high risk infants showed no reduction in sepsis or mortality. However, these findings do not rule out a moderate benefit.

Blood products other than immunoglobulin

White cell (granulocyte) transfusions are also a logical approach. Although preliminary clinical evidence is encouraging, there are potential risks from transmission of infection (e.g. HIV or hepatitis) or from graft-versus-host disease, and the technology is not widely available. Exchange transfusion with fresh whole adult blood appeared effective in one RCT of 22 septicaemic infants, but may also transmit infection. In another RCT in 776 infants of less
Protocol

than 32 weeks gestation, there was no evidence that prophylactic fresh frozen plasma reduced the risks of mortality from all causes or of disability in survivors at 2 years.

Overall, therefore, the evidence suggests that IVIG therapy is one of the most promising strategies in neonatal sepsis and should be assessed in a definitive RCT.

Non-specific versus specific immunoglobulin

This trial will use non-specific, polyclonal IVIG (normal human IgG immunoglobulin) produced from plasma from non-UK donors. It was decided that specific IVIG would not be used and that there was no necessity to characterise the specific antibacterial profile of the non-specific IVIG for the following reasons:

1) Previous RCTs of non-specific, polyclonal IVIG in neonates and adults did not characterise any specific aspects of antibacterial function in the products used. There is therefore no reference laboratory data against which to judge the possible antibacterial efficacy of polyclonal IVIG.

2) As the mechanism of action of IVIG is likely to be multifactorial, the precise aspects of antibacterial function which should be assessed are speculative.

3) Despite the production of monoclonal antibodies with demonstrable in vitro and in vivo antibacterial function in laboratory studies, they have not been associated with reductions in mortality in RCTs. There is therefore no evidence that laboratory studies which attempt to characterise specific aspects of antibacterial function in IVIG products would be more predictive of clinical efficacy than the existing clinical evidence from RCTs in support of nonspecific, polyclonal IVIG therapy.

Results of previous randomised controlled trials

A Cochrane systematic review of the prophylactic use of non-specific IVIG in 15 RCTs with a total of 5,054 preterm or low birthweight infants has demonstrated that prophylactic, non-specific IVIG reduced sepsis (RR 0.85, 95% CI 0.74 to 0.98) and was safe, with no major adverse effects, but did not demonstrate a definite reduction in mortality (RR 0.89, 95% CI 0.75 to 1.05).

A Cochrane systematic review of reports of RCTs of IVIG therapy for proven or suspected neonatal sepsis identified nine studies that reported outcomes for 318 infants with suspected infection and 262 infants with proven infection. IVIG therapy appeared to be safe and was associated with approximately 40% reduction in the risk of mortality for both suspected and proven infection (Tables 1 and 2). However, the confidence intervals were wide and the studies included in the analyses were small and not of high methodological quality. Problems identified by the reviewers were lack of allocation concealment, lack of blinding of outcome assessment and high levels of post-randomisation exclusions in some of the trials.
Table 1 Mortality in trials of IVIG for suspected infection in neonates

<table>
<thead>
<tr>
<th>Study</th>
<th>Expt n/N</th>
<th>Ctrl n/N</th>
<th>Relative Risk (95% CI Fixed)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christensen 1991</td>
<td>0/ 11</td>
<td>0/ 11</td>
<td>not estimable</td>
<td>0</td>
</tr>
<tr>
<td>Erdem 1993</td>
<td>6/ 20</td>
<td>9/ 24</td>
<td>0.80 [0.34, 1.86]</td>
<td>22.0%</td>
</tr>
<tr>
<td>Haque 1988</td>
<td>1/ 30</td>
<td>6/ 30</td>
<td>0.17 [0.02, 1.30]</td>
<td>16.1%</td>
</tr>
<tr>
<td>Samatha 1997</td>
<td>5/ 30</td>
<td>8/ 30</td>
<td>0.62 [0.23, 1.69]</td>
<td>21.5%</td>
</tr>
<tr>
<td>Shenoi 1999</td>
<td>7/ 25</td>
<td>7/ 25</td>
<td>1.00 [0.41, 2.43]</td>
<td>18.8%</td>
</tr>
<tr>
<td>Sidiropoulos 1981</td>
<td>4/ 41</td>
<td>8/ 41</td>
<td>0.50 [0.16, 1.53]</td>
<td>21.5%</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>23/ 157</td>
<td>38/ 161</td>
<td>0.63 [0.40, 1.00]</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 2 Mortality in trials of IVIG for proven infection in neonates

<table>
<thead>
<tr>
<th>Study</th>
<th>Expt n/N</th>
<th>Ctrl n/N</th>
<th>Relative Risk (95% CI Fixed)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen 1996</td>
<td>2/ 28</td>
<td>1/ 28</td>
<td>2.00 [0.19, 20.82]</td>
<td>3.8%</td>
</tr>
<tr>
<td>Erdem 1993</td>
<td>5/ 15</td>
<td>7/ 16</td>
<td>0.76 [0.31, 1.89]</td>
<td>25.4%</td>
</tr>
<tr>
<td>Haque 1988</td>
<td>1/ 21</td>
<td>4/ 23</td>
<td>0.27 [0.03, 2.26]</td>
<td>14.3%</td>
</tr>
<tr>
<td>Mancilla-Ramirez 1992</td>
<td>2/ 19</td>
<td>2/ 18</td>
<td>0.95 [0.15, 6.03]</td>
<td>7.7%</td>
</tr>
<tr>
<td>Samatha 1997</td>
<td>0/ 12</td>
<td>4/ 16</td>
<td>0.15 [0.01, 2.46]</td>
<td>14.6%</td>
</tr>
<tr>
<td>Sidiropoulos 1981</td>
<td>2/ 20</td>
<td>4/ 15</td>
<td>0.38 [0.08, 1.78]</td>
<td>17.2%</td>
</tr>
<tr>
<td>Weisman 1992</td>
<td>2/ 14</td>
<td>5/ 17</td>
<td>0.49 [0.11, 2.13]</td>
<td>17.0%</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>14/ 129</td>
<td>27/ 133</td>
<td>0.55 [0.31, 0.98]</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

The reviewers concluded that: “The reduced mortality following treatment with IVIG for subsequently proven infection, the imprecise estimate of the effect size (number needed to treat 11, 95% CI 5.6, 100) and the borderline statistical significance for the outcome of mortality in neonates with suspected infection justify further research. Researchers should be encouraged to undertake well-designed trials to confirm or refute the effectiveness of IVIG”.35

Using slightly different selection criteria and methods for analysis, Jenson and Pollock have published a systematic review of three RCTs of IVIG in neonatal sepsis in which 55 infants received IVIG and 55 received placebo or no intervention.44 The odds ratio for mortality in treated versus control infants was 0.173 (95% CI 0.03 to 0.75). These authors reached a conclusion which many would consider premature, namely that "IVIG should be considered as part of the routine therapy of neonatal sepsis”. However, it remains true that, among all the interventions currently reviewed in the Cochrane LibraryIVIG therapy in neonatal sepsis is associated with one of the largest reductions in the odds of death. A further RCT of IVIG in neonatal sepsis in Brazilian neonatal units is being conducted. One of the applicants (K Haque) is an investigator of this trial. Its results will be incorporated into the current meta-analysis as soon as they are available.
Another recent Cochrane systematic review and meta-analysis of intravenous immunoglobulin used for treating sepsis and septic-shock in all patients (adults, children and neonates) suggested a beneficial effect of non-specific IVIG on all cause mortality (RR 0.64, 95% CI 0.51 to 0.80), (Table 3).

Table 3 Mortality in trials of IVIG for proven sepsis & septic shock in adults and children

<table>
<thead>
<tr>
<th>Review:</th>
<th>Intravenous immunoglobulin for treating sepsis and septic shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison:</td>
<td>Polyclonal IVIG vs placebo or no intervention</td>
</tr>
<tr>
<td>Outcome:</td>
<td>All-cause mortality (ACM)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Exptl n/N</th>
<th>Ctrl n/N</th>
<th>Relative Risk (95% CI Fixed)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard IVIG vs placebo or no intervention ACM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen 1996</td>
<td>2/ 28</td>
<td>1/ 28</td>
<td>2.00 [0.19, 20.82]</td>
<td>0.9%</td>
</tr>
<tr>
<td>De Simone 1988</td>
<td>7/ 12</td>
<td>9/ 12</td>
<td>0.78 [0.44, 1.39]</td>
<td>8.5%</td>
</tr>
<tr>
<td>Dominioni 1991</td>
<td>11/ 29</td>
<td>22/ 33</td>
<td>0.57 [0.34, 0.96]</td>
<td>19.3%</td>
</tr>
<tr>
<td>Grundmann 1988</td>
<td>15/ 24</td>
<td>19/ 22</td>
<td>0.72 [0.51, 1.03]</td>
<td>18.6%</td>
</tr>
<tr>
<td>Just 1986</td>
<td>6/ 13</td>
<td>9/ 16</td>
<td>0.82 [0.40, 1.70]</td>
<td>7.6%</td>
</tr>
<tr>
<td>Shenoi 1999</td>
<td>7/ 25</td>
<td>7/ 25</td>
<td>1.00 [0.41, 2.43]</td>
<td>6.6%</td>
</tr>
<tr>
<td>Weisman 1992</td>
<td>2/ 14</td>
<td>5/ 17</td>
<td>0.49 [0.11, 2.13]</td>
<td>4.2%</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>50/ 145</td>
<td>72/ 153</td>
<td>0.73 [0.57, 0.93]</td>
<td>65.8%</td>
</tr>
</tbody>
</table>

| IgM-enriched IVIG vs placebo or no intervention ACM |
Erdem 1993	6/ 20	9/ 24	0.80 [0.34, 1.86]	7.7%
Haque 1988	1/ 30	6/ 30	0.17 [0.02, 1.30]	5.6%
Schedel 1991	2/ 27	9/ 28	0.23 [0.05, 0.97]	8.3%
Wesoly 1990	8/ 18	13/ 17	0.58 [0.33, 1.04]	12.6%
Subtotal (95% CI)	17/ 95	37/ 99	0.48 [0.30, 0.76]	34.2%

| Total (95% CI) | 67/ 240 | 109/ 252 | 0.64 [0.51, 0.80] | 100% |

A sensitivity analysis was also conducted, including only seven trials of good and fair quality. This also suggested a decreased risk of mortality (RR 0.55, 95% CI 0.40 to 0.79).

The same Cochrane review also explored the effect of monoclonal antibodies; the relative risks for both anti-endotoxins and anti-cytokines were similar and were of borderline statistical significance (anti-endotoxins RR 0.93, 95% CI 0.85 to 1.02; anti-cytokines RR 0.92, 95% CI 0.86 to 0.99). The authors concluded that although there was evidence that non-specific IVIG appears to be beneficial “large, multi-centre studies are needed to confirm the effectiveness of polyclonal IVIGs in reducing mortality in patients with sepsis. These are particularly indicated for neonatal sepsis, where evidence for benefit is still conflicting”.

Safety: No evidence of transmission of blood borne viruses or prion disease

The risk of transmissible infection by blood products remains a potent source of anxiety for many clinicians and patients. However, IVIG produced to modern standards of quality control is one of the safest blood products available. There have been no reports of transmission of viruses or prions by the IVIG to be used...
in this study. Methods of production including ethanol fractionation, and the use of the pH4/pepsin virus inactivation procedure, in addition to the use of plasma originating from non-UK donors have reduced the risk of transmission of infection to an absolute minimum.46, 47

In particular, for prion disease, leucocytes represent the main source of infectivity in Creutzfeld-Jacob disease. Owing to the physico-chemical characteristics of the abnormal prion protein, the process of partitioning and filtration during fractionation further reduces the risk of transmission in IVIG. This theoretical risk must be considered in the context of the significantly increased risk of mortality and morbidity in infants eligible for the study.

As a further safeguard, fractionation pools of IVIG are tested with PCR (polymerase chain reaction) for known blood borne viruses.

Safety: No evidence of haemolysis related to T activation of red cells

Bacteria such as Clostridia can strip neuraminic acid residues from the red cell membrane, exposing the T antigen (T activation). Adult plasma contains anti-T antibodies, so transfusing newborn infants whose red cells are T activated with whole blood, unwashed red cells or unselected plasma may lead to polyagglutination and haemolysis.49 However, anti-T antibodies are predominantly IgM immunoglobulins a fraction which is removed from the IVIG used in this study.50 T activation is not a contra-indication to its use in neonatal sepsis. Although neonatal haemolysis has been noted in association with IVIG it was not clinically significant.51 The UK Committee on Safety of Medicines has received no reports of neonatal haemolysis or other adverse reactions in association with IVIG over a 30 year period until the present (personal communication, September 1999).

Current practice

IVIG is not currently widely used for prophylaxis or treatment of neonatal sepsis in UK NICUs. In 1997, a postal survey of all paediatricians who were members of the British Association of Perinatal Medicine was undertaken into practice in the investigation and treatment of neonatal sepsis.52 Of the 181 (66%) who responded, only 13 (7%) used IVIG routinely as adjuvant therapy alongside antibiotics.

Summary

There is good preliminary evidence that IVIG therapy may reduce mortality in severe neonatal sepsis. However, there is no information on longer term quality of survival, the number of babies included in the existing systematic reviews is small and the effect size seems larger than would be anticipated. As a consequence a reliable multicentre trial is needed to provide definitive evidence that IVIG therapy for severe neonatal sepsis is or is not of benefit, with mortality or major morbidity as the outcome. IVIG is not yet widely used as routine therapy. There remains, therefore, a window of opportunity to perform such a trial before an intervention which has been inadequately assessed begins to be incorporated into routine practice.
TRIAL ELIGIBILITY

Hospitals will be eligible for entry if they can provide neonatal intensive or special care, can achieve satisfactory rates of follow up at two years and would be able to institute the routine use of adjuvant IVIG for babies with sepsis if the trial demonstrates evidence of benefit.

Babies are eligible if:

1. They are receiving antibiotics and have proven or suspected serious infection

 AND

2. They have at least one of following:
 • birthweight less than 1500g
 OR
 • evidence of infection in blood culture, CSF or usually sterile body fluid
 OR
 • respiratory support via an endotracheal tube

 AND

3. There is substantial uncertainty that IVIG is indicated

Exclusion criteria are:

1. IVIG has already been given

2. IVIG thought to be needed or contra-indicated (e.g. because of severe congenital abnormality or contra-indications in the manufacturer’s licensed product information sheet).

RECRUITMENT AND TRIAL ENTRY

Recruitment will depend on good teamwork, knowledge and confidence among all clinicians, particularly front line nursing and medical staff, so that parents receive appropriate information about the study before entry and throughout their baby’s stay. The ORACLE study recruited over 11,000 infants in 161 centres. Experience from that trial suggests that it is helpful if nurses and doctors understand the study background, see clinical research as an integral part of neonatal care contributing to future quality of care, and if a named nurse is appointed and trained as a local trial co-ordinator. If those caring for the baby are well informed about the study they can discuss it without transmitting anxiety. Indeed, parents are likely to feel less anxious if given the opportunity to discuss the options for their baby’s treatment in the context of the study with knowledgeable staff.

The named nursing and medical representative in each unit will therefore receive opportunities for training, regular information and support to enable them to orientate and update new and established nursing and medical staff. The protocol, printed materials and relevant new research will be widely available and staff will be kept informed by newsletters, personal visits and the study website (www.npeu.ox.ac.uk/INIS).
Many babies receive antibiotics for sepsis during their stay in a neonatal unit. Some babies may be given antibiotics more for prophylaxis than for treatment of suspected sepsis. The threshold for considering entry into INIS must be that there is a clinical suspicion that this baby has sepsis. Once an infant is considered eligible, it is important that enrolment takes place as soon as practically possible.

All parents should routinely be given an information leaflet about INIS by the nursing staff when their baby is admitted to the neonatal unit. This will include details of their local medical and nursing contact with whom they can discuss the study. If their baby becomes eligible they will be asked for consent to participate in the study and later follow up, by the most appropriate member of staff available, in person or by telephone. If they consent in person a copy of the signed consent form will be given to the parent(s). If telephone consent is considered necessary and appropriate by the recruiting clinician, a telephone consent form will be completed. This form should then be read and signed by the parent(s) at their next visit to the hospital. Once this has happened, a copy of the consent form will be given to the parent(s).

TREATMENT ALLOCATION

The practical arrangements for random allocation to trial groups will be as simple as possible, based on that used in the ORACLE study. Staff will open the next sequentially numbered study pack kept in the neonatal unit, which contains all the materials necessary to give a course of study drug.

CLINICAL MANAGEMENT

IVIG group: an intravenous infusion of IVIG of 10 ml per kg, repeated after 48 hours.

Control group: an intravenous infusion of 10ml per kg of 0.2% albumin solution (placebo) repeated after 48 hours.

Both infusions are of identical appearance: they are colourless and froth on agitation.

Administration of treatment

The IVIG or placebo infusion will be given according to the manufacturer’s instructions, over about 4-6 hours. A second, similar dose will be given at or around 48 hours after the first dose. No further IVIG or placebo should be given, in this or any subsequent episodes of sepsis.

Neonatal management

All other aspects of neonatal management will be left to the discretion of the paediatrician responsible for care. No special investigations and no delays of discharge will be required.
MEASUREMENT OF OUTCOME

Primary outcome measure

1. Mortality or major disability at two years, corrected for gestational age.

Secondary short term outcomes

2. Mortality, chronic lung disease or major cerebral abnormality before hospital discharge, significant positive culture after trial entry, pneumonia, necrotising enterocolitis, duration of respiratory support.

Secondary long term outcomes

3. Mortality before two years, major disability at 2 years, non-major disability at 2 years.

Health service utilisation

4. Length of hospital stay and number of hospital admissions.

DATA COLLECTION

Hospital mortality, chronic lung disease, major cerebral abnormality and length of stay will be assessed from case notes. Major disability at two years will be assessed by questionnaires sent to the child’s parents and health care professionals. Major disability will be defined according to the criteria set out in the National Perinatal Epidemiology Unit (NPEU) and Oxford Regional Health Authority document and will include any major disability in the following domains: neuromotor function, seizures, auditory function, communication, visual function, cognitive function and other physical disability.

The parental questionnaire incorporates the parent report component of the Parent Report of Children's Abilities (PARCA), which was used in the 2 year follow up of the MRC funded UKOS trial. This shortened version of the PARCA was acceptable to parents, with a high response rate in UKOS, and is currently being validated by the UKOS team. The PARCA score (both parent report and parent administered components) has been validated and was found to predict performance on the Mental Development Index of the Bayley Scales of Infant Development II. The overall score for the modified PARCA will give a measure of verbal and non-verbal cognitive abilities. The parents’ questionnaire also includes questions about temperament, which may give an early indication of behavioural and attentional difficulties, and also includes questions about respiratory function, hearing, vision, hospital admissions, relevant diagnoses and current function in a number of domains, allowing categorisation of disability as major or non-major.

Experience of other trials in this area at the NPEU, Oxford and elsewhere, suggests that it is possible to determine early neonatal events for all babies recruited. Loss to follow-up after hospital discharge of the child is more
problematic. There are likely to be few children who cannot be traced in the UK either through the hospital of recruitment or the NHS Central Register. Similar high rates of follow-up will be expected in countries participating outside the UK.

ANALYSIS

An intention to treat analysis will be performed comparing the outcome of all children allocated IVIG with all those allocated placebo, regardless of what treatment was received, or how complete that treatment was. Statistical analysis will calculate the relative risk of an outcome in the IVIG group compared with the placebo group along with a 95% confidence interval. For subgroup analyses, 99% confidence intervals will be calculated to take account of the number of comparisons.

Subgroup analyses

Ten subgroup analyses will also be undertaken, stratifying by the factors described below.

1. Birth weight. Infants of very low birth weight (VLBW: < 1500g) vs infants with birth weight > 1500g.

2. Small for gestational age infants (< 10th centile) vs infants ≥ 10th centile.

3. Gestational age at birth: < 26 weeks, 26+0 to 27+6 weeks, 28+0 to 29+6 weeks, 30+0 weeks or more.

4. Gender: male vs female.

5. Maternal chorioamnionitis: infants born at < 30 weeks gestation to women with clinical chorioamnionitis vs infants born at < 30 weeks gestation with no clinical chorioamnionitis vs infants born at ≥ 30 weeks.

6. Elevated maternal CRP: infants born at < 30 weeks gestation to women with elevated CRP (> 80mg/l) vs infants born at < 30 weeks gestation with no elevated maternal CRP vs infants born at ≥ 30 weeks.

7. Preterm birth and duration of membrane rupture: Born at < 37 weeks and membranes ruptured for < 24 hours, 24-48 hours or > 48 hours versus born at ≥ 37 weeks.

8. Clinical markers of mortality risk:

 (i) Clinical evidence of high mortality risk: looking seriously ill or inactive, and has:

 (a) capillary refill time > 3 seconds OR

 (b) bowel perforation or definite necrotising enterocolitis OR

 (c) prolonged bleeding from puncture sites OR

 (d) ventilated, SaO2/FiO2 ratio or PaO2/FiO2 ratio consistent with > 15% mortality risk for gestation OR

 (e) pH consistent with > 15% mortality risk for gestation.
[SaO2/FiO2 ratio, PaO2/FiO2 ratio and pH consistent with >15% mortality risk will be extrapolated from oxygenation and pH data in a prospective cohort of 14,000 infants (UK Neonatal Staffing Study) by methods similar to that used in the development of the MRC funded CRIB score.]

(ii) Intermediate mortality risk: not satisfying criteria for high risk, but has:
 (a) Total white cell count < 5 x 10⁹/l
 (b) CRP above 15 mg/l
 (c) platelet count < 50 x 10⁹/l
 (d) organism(s) isolated in blood or usually sterile site
 (e) pneumonia on chest X-ray
 (f) CSF consistent with bacterial meningitis.

(iii) Other: not satisfying criteria for high or intermediate risk.

9. Type of infection:

 (i) Early onset infection (non-contaminant organisms isolated from culture sent before 48 hours):
 (a) group B streptococcal disease
 (b) other pathogens
 (c) indeterminate aetiology.

 (ii) Late onset infection (non-contaminant organism isolated from culture sent after 48 hours):
 (a) gram positive organisms except coagulase negative staphylococcus
 (b) Coagulase negative staphylococcus
 (c) gram negative organisms
 (d) fungal infection
 (e) other pathogens
 (f) indeterminate aetiology.

 (iii) Post surgery.

10. Type of IVIG This subgroup analysis will analyse separately babies recruited in hospitals using the different IVIG products included in INIS. This subgroup analysis will include baseline characteristics and treatments after randomisation as well as outcomes.

Interim analyses: the Data Monitoring and Ethics Committee

For the trial a Data Monitoring and Ethics Committee (DMEC) has been established. This is independent of the trial organisers and meets at least once per year. During the period of recruitment to the trial, interim analyses are supplied, in strict confidence, to the DMEC, together with any other analyses the DMEC may request. In the light of interim data, and other evidence from relevant studies (including updated overviews of the relevant randomised controlled trials), the DMEC will inform the Trial Steering Committee, if in their view: i) there is proof beyond reasonable doubt that the data indicate that any
part of the protocol under investigation is either clearly indicated or contraindicated, either for all infants or for a particular subgroup of trial participants, or ii) it is evident that no clear outcome will be obtained. Decision to inform the Trial Steering Committee in either of these circumstances will in part be based on statistical considerations.

Appropriate criteria for proof beyond reasonable doubt cannot be specified precisely. A difference of at least 3 standard deviations in the interim analysis of a major endpoint may be needed to justify halting, or modifying, such a study prematurely. If this criterion were to be adopted, it would have the practical advantage that the exact number of interim analyses would be of little importance, and so no fixed schedule is proposed. Unless modification or cessation of the protocol is recommended by the DMEC, the Trial Steering Committee, collaborators and administrative staff (except those who supply the confidential information) will remain ignorant of the results of the interim analysis. Collaborators and all others associated with the study may write through the trial office to the DMEC to draw attention to any concern they may have about the possibility of harm arising from the treatment under study or about any other matters that may be relevant.

The membership of the DMEC is:

Professor Adrian Grant, Director, Health Services Research Unit, Foresterhill, Aberdeen AB25 2ZD. Email: a.grant@abdn.ac.uk

Professor Forrester Cockburn, Royal Hospital for Sick Children, Yorkhill NHS Trust, Glasgow G3 8SJ. Email: f.cockburn@clinmed.gla.ac.uk

Professor Deborah Ashby, Wolfson Institute of Preventive Medicine, Charterhouse Square, London WC1M 6BQ. Email: d.ashby@gmul.ac.uk

Mrs Hazel Thornton, ‘Saionara’, 31 Regent Street, Rowhedge, Colchester CO5 7EA. Email: hazelcagct@aol.com

Professor Neena Modi, Reader in Neonatal Medicine, Imperial College Faculty of Medicine, 4th Floor Chelsea & Westminster Hospital, 369 Fulham Road, London, SW10 9NH. Email: n.modi@imperial.ac.uk

Dr Brian McClelland, Consultant, Scottish National Blood Transfusion Service, Edinburgh Royal Infirmary, Edinburgh EH3 9YW Email: brian.mcclelland@snbts.csa.scot.nhs.uk

SAMPLE SIZE AND FEASIBILITY

Table 4 shows positive blood culture rates (including probable contaminants) in 3,963 consecutive infants of all birthweights admitted to a randomly selected, nationally representative cohort of 54 UK neonatal units between 1st March 1998 and 4th September 1998 in a study of organisation and outcomes of neonatal care funded by the NHS Executive.
Among VLBW infants with positive blood cultures, mortality was 14%. In a North American cohort, mortality in VLBW infants with septicaemia was 21%. Assuming combined rates of mortality and major morbidity of 10-20% for all infants and 20-30% for VLBW infants, Table 5 outlines estimated sample sizes.

Table 5

<table>
<thead>
<tr>
<th>Mortality or major morbidity in control group</th>
<th>Mortality or major morbidity in IVIG group</th>
<th>Relative risk reduction</th>
<th>Total sample size required to detect difference with 95% confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>30%</td>
<td>26%</td>
<td>13%</td>
<td>4,052</td>
</tr>
<tr>
<td>30%</td>
<td>25%</td>
<td>17%</td>
<td>2,580</td>
</tr>
<tr>
<td>30%</td>
<td>20%</td>
<td>33%</td>
<td>626</td>
</tr>
<tr>
<td>25%</td>
<td>21%</td>
<td>16%</td>
<td>3,572</td>
</tr>
<tr>
<td>25%</td>
<td>20%</td>
<td>20%</td>
<td>2,266</td>
</tr>
<tr>
<td>25%</td>
<td>15%</td>
<td>40%</td>
<td>540</td>
</tr>
<tr>
<td>20%</td>
<td>16%</td>
<td>20%</td>
<td>2,994</td>
</tr>
<tr>
<td>20%</td>
<td>15%</td>
<td>25%</td>
<td>1,890</td>
</tr>
<tr>
<td>20%</td>
<td>12.5%</td>
<td>37.5%</td>
<td>810</td>
</tr>
<tr>
<td>15%</td>
<td>12%</td>
<td>20%</td>
<td>4,204</td>
</tr>
<tr>
<td>15%</td>
<td>10%</td>
<td>33%</td>
<td>1,450</td>
</tr>
<tr>
<td>12%</td>
<td>9%</td>
<td>25%</td>
<td>3,408</td>
</tr>
<tr>
<td>10%</td>
<td>7.5%</td>
<td>25%</td>
<td>4,166</td>
</tr>
</tbody>
</table>

Feasibility

About 5,000 infants will be needed to demonstrate moderate reductions in mortality or survival with major developmental delay with adequate power. Over a three year recruitment period, assuming that 7-10% of all admissions are diagnosed with clinical sepsis and considered eligible for recruitment, 150 NICUs with an average of 300 admissions per year will be required to achieve the recruitment target, assuming a 40-50% rate of recruitment of eligible infants. Neonatal units will initially be recruited in the UK, Australia and New Zealand. A census of all 186 UK neonatal intensive care units (NICUs) and 60 special care baby units in 1996 (which is a 100% response rate) found that the median number of admissions per year per NICU was 317. If a broadly representative sample of about half all UK NICUs and SCBUs participate, then over 50% of the projected recruitment rate for the trial will be possible within the UK, leaving the additional 50% to be recruited from the rest of the world. This study reflects the philosophy that the only practicable way to achieve comparisons which are sufficiently large to minimise the risk of being seriously misled by the play of chance is to design trials that are extremely simple and flexible.
Experience in the OSIRIS and ORACLE study suggest that a large, simple trial of this scale of a potentially important intervention is feasible. Furthermore, systematic reviews of RCTs of IVIG therapy in neonatal sepsis suggest a substantial reduction in mortality. This contrasts with the systematic reviews of RCTs of antibiotics in threatened preterm birth which led to the ORACLE study, as these showed no evidence of a difference in neonatal mortality. This preliminary evidence that IVIG may reduce mortality may further enhance the appeal of the study.

The estimate of the incidence of the outcome (the event rate) for the trial is imprecise, particularly as the threshold at which clinicians will enter patients cannot be estimated. If clinicians enter babies where the likelihood of serious sepsis is lower then the event rate will also be lower. If clinicians restrict entry to only those babies who are very sick, then the event rate will be high. Either of these two scenarios is reasonable because it will define a population to which the trial result can be generalised. However it does mean that until the trial has recruited sufficient numbers of babies it will not be possible to determine the optimum trial sample size with any certainty. As a consequence the trial sample size currently represents the minimum size desirable. Assuming the trial recruits for three years, the maximum number of babies which can be recruited during this time will be recruited and it is possible that this number may exceed 5,000. During recruitment to the trial the accumulating data will be seen by an independent Data Monitoring and Ethics Committee at least once per year (see above) and they will advise the Trial Steering Committee whether the trial has answered the clinical question being addressed. If not, the trial will continue to recruit until 5,000 babies have been recruited, or until funding is exhausted.

PUBLICATION POLICY

To safeguard the scientific integrity of the trial, data from this study should not be presented in public or submitted for publication without requesting consent from the Trial Steering Committee (see Organisation below). The success of the trial depends on the collaboration of a large number of doctors and nurses. For this reason, chief credit for the results will be given not to the committees or central organisers but to all who have collaborated in the study. Acknowledgement will include all members of the trial committees, the data co-ordinating centre, trial staff, and local co-ordinators at all collaborating centres. Authorship at the head of the paper will take the form; “The INIS Collaborative Group”. This is the preferred option, as it avoids giving undue prominence to any individuals. All contributors to the study will be listed at the end of the report, with their contribution to the study identified.
ORGANISATION

Trial Steering Committee
The Trial Steering Committee (TSC) provides overall supervision of the trial on behalf of the Medical Research Council. Its terms of reference are:

1. To monitor and supervise the progress of the trial towards its interim and overall objectives.
2. To review at regular intervals relevant information from other sources (e.g. related trials).
3. To consider the recommendations of the Data Monitoring and Ethics Committee.
4. In the light of 1, 2 and 3 above, to inform the MRC Council and relevant MRC Research Boards on the progress of the trial.
5. To advise the MRC Council on publicity and the presentation of all aspects of the trial.

The membership of the TSC is:

Professor Richard Cooke, Professor of Neonatal Medicine, Neonatal Intensive Care Unit, Liverpool Women's Hospital, Crown Street, Liverpool L8 7SS. Email: mc19@liverpool.ac.uk

Dr Tim Neal, Medical Microbiology, University of Liverpool, Liverpool L69 3BX. Email: timothy.neal@rlbuht.nhs.uk

Dr Gorm Greisen, Department of Neonatology, Rigs - Høstialet, DK 2100 Koppenhagen, Denmark. Email: greisen@rh.dk

Professor Douglas G Altman, ICRF Medical Statistics Group, Centre for Statistics in Medicine, Old Road Campus, Headington, Oxford OX3 7LF. Email: doug.altman@cancer.org.uk

Farrah Pradhan, BLISS, 68 South Lambeth Road, London SW8 1RL.

Dr William Tarnow-Mordi, Department of Neonatology, Westmead Hospital, Sydney, New South Wales 2122, Australia. Email: williamtm@med.usyd.edu.au

Fiona Russell, Medical Research Council Head Office, 20 Park Crescent, London, W1B 1AL

Professor Peter Brocklehurst, NPEU, Institute of Health Sciences, Old Road, Headington, Oxford OX3 7LF. Email: peterbrocklehurst@npeu.ox.ac.uk

Meetings of the TSC will take place at least once per year

Investigators' Group
The Investigators’ Group will consist of the trial investigators, representatives of specific groups whose expertise is necessary for the trial, and investigators of any ancillary studies. This group will supervise the practical aspects of the trial's conduct. It will resolve problems brought to it by the Project Management Group (see below) and will be responsible for organising reporting and dissemination of the trial's results.
Project Management Group
The Project Management Group (PMG) will oversee the day-to-day running of the trial. The responsibilities of the Project Management Group include:

i) Recruitment of participating centres
ii) Distribution and supply of data collection forms and other appropriate documentation for the trial
iii) Data collection and management
iv) Organisation of the distribution system for the treatment packs
v) Organisation of the follow-up of children at 2 years of age, including the distribution of questionnaires, follow-up of non-responders and liaison with local ‘follow-up’ personnel
vi) Data entry and cleaning
vii) Data analysis
viii) Collection of adverse event data
ix) Organising and servicing the Data Monitoring and Ethics Committee.

Local Co-ordination
Each participating centre will identify a local medical co-ordinator and a local neonatal nurse co-ordinator (as necessary). The responsibility of the local co-ordinators will be to:

i) Be familiar with the trial
ii) Liaise with the INIS Co-ordinating centre in Oxford
iii) Ensure that all staff involved in the care of babies on the neonatal unit are informed about the trial
iv) Ensure that mechanisms for recruitment of eligible babies (including information material) are in place, monitor their effectiveness, and discuss reasons for the non-recruitment of any eligible babies with relevant staff
v) Ensure that supplies of data collection forms are always available, that they are completed and returned to the INIS Co-ordinating centre promptly, and to deal with any queries arising
vi) Notify the trial co-ordinating centres of any serious adverse events
vii) Facilitate other aspects of local collaboration as appropriate
viii) Make all data available for verification, audit and inspection purposes as necessary
ix) Ensure that the confidentiality of all information about trial participants is respected by all persons
FREQUENTLY ASKED QUESTIONS

Is IVIG safe?
No blood product (and no treatment of any kind) is 100% safe, but IVIG is one of the safest blood products there is. Given prophylactically in randomised controlled trials with over 5,000 very low birth weight infants, IVIG was reported as safe, with no serious adverse reactions. The IVIG for this study is sourced from plasma from non-UK donors who are screened by medical history. The plasma is tested for HIV 1, 2 and Hep A, B and C by PCR. The IVIG is treated by ethanol fractionation and the recognised pH 4/pepsin virus inactivation procedure to minimise the risk of transmission of viral infection. It should be given according to the manufacturers’ product information.

What about T activation, for example in infants with necrotising enterocolitis?
Infants with T activated red cells, as may occur with Clostridial infections and in necrotising enterocolitis, may suffer haemolysis unless they receive washed red cells or fresh frozen plasma with low titres of anti-T antibody. Infants with T activated red cells can receive the non-specific IVIG to be used in this study however, as it has a negligible concentration of anti-T antibody (which is mainly IgM). There have been no reports of neonatal haemolysis in association with any type of IVIG.

Will IVIG be expensive?
Non-specific IVIG will be supplied free of charge during the study. It currently costs about £20 sterling per gram to produce. If this study shows that it is effective in reducing mortality, and between 5 - 200 infants needed to be treated to save an extra life, the cost (of IVIG alone) might vary approximately between £100 - 4000 per life saved. This compares favourably with many other interventions - but does not take into account any additional hospital costs. Non-specific IVIG products made by non-commercial agencies, such as the manufacturers for this study are likely to be less expensive than commercial products in the longer term.

Should all infants on antibiotics or with respiratory distress be recruited into the study?
No. It would be reasonable to recruit any infant who makes a poor response to surfactant, or who is ventilated with suspected pneumonia. Otherwise, infants with respiratory distress syndrome who respond well to surfactant with no further evidence of sepsis should not be recruited.
APPENDIX 1

CONTENTS OF IVIG AND PLACEBO UPON RECONSTITUTION

WITH 60ml WATER FOR INJECTION

<table>
<thead>
<tr>
<th></th>
<th>IVIG*</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Protein (g/L)</td>
<td>44.5±0.8</td>
<td>2.0±0.5</td>
</tr>
<tr>
<td>Sodium (mMol)</td>
<td>44±2</td>
<td>48</td>
</tr>
<tr>
<td>Potassium (mMol)</td>
<td>0.15</td>
<td>0.17</td>
</tr>
<tr>
<td>pH</td>
<td>6.9±0.1</td>
<td>6.65</td>
</tr>
<tr>
<td>Osmolality (mOsm/kg)</td>
<td>403±11</td>
<td>413</td>
</tr>
<tr>
<td>Ethanol (ml/L)</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>Citrate (mMol)</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>Albumin (g/L)</td>
<td><0.1</td>
<td>2.0±0.5</td>
</tr>
<tr>
<td>Sucrose (%)</td>
<td>9.0±0.3</td>
<td>10.5</td>
</tr>
<tr>
<td>HPLC# (% Aggregate)</td>
<td>2.3±0.3</td>
<td>4.3</td>
</tr>
<tr>
<td>PKA^ (iu/ml)</td>
<td><2.0</td>
<td><2.0</td>
</tr>
</tbody>
</table>

* mean ± SD of 20 batches of 3g IVIG

high purity liquid chromatography

^ pre-kallirien activator
REFERENCES

For more information about INIS contact:

INIS Co-ordinating Centre
National Perinatal Epidemiology Unit
University of Oxford
Old Road Campus
Headington
Oxford
OX3 7LF
UK

Tel: +44 (0) 1865 289741
Fax: +44 (0) 1865 289740
Email: inis@npeu.ox.ac.uk
Web-site: www.npeu.ox.ac.uk